DocumentCode :
2775241
Title :
A decomposition approach for fuzzy systems identification
Author :
Liang Wang ; Langari, R.
Author_Institution :
Texas A&M Univ.
Volume :
1
fYear :
1995
fDate :
13-15 Dec. 1995
Firstpage :
261
Lastpage :
266
Abstract :
This paper develops a novel approach to building Sugeno-type models. This approach consists of two steps: First, a fuzzy discretization technique is used to determine the membership functions of input variables, which is the most difficult aspect in constructing a Sugeno-type model. Second, an iterative algorithm, known as the EM algorithm, is used to estimate the parameters of linear regression models in the consequent part of the model. The approach has two salient features: 1) The premise identification and the consequence identification of the model can be separated through use of the fuzzy discretization technique, while these are mutually related in previous methods. This greatly simplifies the process of model construction. 2) The complex multiparameter optimization problem essential for building the model can be decomposed into L smaller-scale optimization problems by means of the EM algorithm, where L is the number of fuzzy rules. Hence, the complexity of this approach is essentially unaffected by the number of fuzzy rules in the model. Moreover, Because of the clear separation in algorithmic structure, the proposed approach can also be easily implemented on a parallel computer.
Keywords :
Buildings; Concurrent computing; Fuzzy systems; Gaussian processes; Input variables; Iterative algorithms; Linear regression; Mathematical model; Mechanical engineering; Parameter estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1995., Proceedings of the 34th IEEE Conference on
Conference_Location :
New Orleans, LA, USA
ISSN :
0191-2216
Print_ISBN :
0-7803-2685-7
Type :
conf
DOI :
10.1109/CDC.1995.478692
Filename :
478692
Link To Document :
بازگشت