DocumentCode :
2775269
Title :
Bayesian Training of Neural Networks Using Genetic Programming
Author :
Marwala, Tshilidzi
Author_Institution :
Witwatersrand Univ., Johannesburg
fYear :
0
fDate :
0-0 0
Firstpage :
3622
Lastpage :
3626
Abstract :
Bayesian neural networks trained using Markov chain Monte Carlo (MCMC) and genetic programming in binary space within Metropolis framework is proposed. It is tested and compared to classical MCMC method and is observed to give better results than classical approach.
Keywords :
Markov processes; Monte Carlo methods; belief networks; genetic algorithms; learning (artificial intelligence); multilayer perceptrons; Bayesian neural network training; Markov chain-Monte Carlo method; Metropolis framework; binary space; genetic programming; Bayesian methods; Distribution functions; Genetic programming; Helium; Inference algorithms; Monte Carlo methods; Multi-layer neural network; Neural networks; Probability distribution; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 2006. IJCNN '06. International Joint Conference on
Conference_Location :
Vancouver, BC
Print_ISBN :
0-7803-9490-9
Type :
conf
DOI :
10.1109/IJCNN.2006.247374
Filename :
1716596
Link To Document :
بازگشت