DocumentCode :
2776803
Title :
Online prediction of time series data with recurrent kernels
Author :
Xu, Zhao ; Song, Qing ; Haijin, Fan ; Wang, Danwei
Author_Institution :
Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore
fYear :
2012
fDate :
10-15 June 2012
Firstpage :
1
Lastpage :
7
Abstract :
We propose a robust recurrent kernel online learning (RRKOL) algorithm which allows the exploitation of the kernel trick in an online fashion. The novel RRKOL algorithm achieves guaranteed weight convergence with regularized risk management through the recurrent hyper-parameters for a superior generalization performance. To select useful data to be learned and remove redundant ones, a sparcification procedure is developed based on the stability analysis of the system. Two time-series prediction examples are presented.
Keywords :
convergence; learning (artificial intelligence); stability; time series; RRKOL algorithm; generalization performance; guaranteed weight convergence; kernel trick; online fashion; online prediction; recurrent hyper-parameters; regularized risk management; robust recurrent kernel online learning algorithm; sparcification procedure; stability analysis; time series data; time-series prediction examples; Convergence; Kernel; Prediction algorithms; Testing; Time series analysis; Training; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks (IJCNN), The 2012 International Joint Conference on
Conference_Location :
Brisbane, QLD
ISSN :
2161-4393
Print_ISBN :
978-1-4673-1488-6
Electronic_ISBN :
2161-4393
Type :
conf
DOI :
10.1109/IJCNN.2012.6252747
Filename :
6252747
Link To Document :
بازگشت