DocumentCode :
2780727
Title :
Entanglement Partitioning of Quantum Particles for Data Clustering
Author :
Shuai, Dianxun ; Lu, Cunpai ; Zhang, Bin
Author_Institution :
Dept. of Comput. Sci. & Eng., East China Univ. of Sci. & Tech., Shanghai
Volume :
2
fYear :
2006
fDate :
17-21 Sept. 2006
Firstpage :
285
Lastpage :
290
Abstract :
This paper presents a generalized quantum particle model to greatly quicken and improve data clustering. The proposed model uses the random dynamics and quantum entanglement of quantum particles on a particle array. In comparison with classical nonquantum methods, the quantum particle model not only clusters much faster, but also has better clustering quality for multi-shape multi-distribution high-dimensional large-scale data sets with noise. The simulations and comparisons show the effectiveness of the quantum particle model
Keywords :
data mining; pattern clustering; quantum computing; quantum entanglement; data clustering; generalized quantum particle model; nonquantum method; quantum entanglement partitioning; random dynamics; Computer science; Data engineering; Data mining; Databases; Interconnected systems; Large-scale systems; Noise robustness; Quantum computing; Quantum entanglement; Tensile stress;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Software and Applications Conference, 2006. COMPSAC '06. 30th Annual International
Conference_Location :
Chicago, IL
ISSN :
0730-3157
Print_ISBN :
0-7695-2655-1
Type :
conf
DOI :
10.1109/COMPSAC.2006.131
Filename :
4020181
Link To Document :
بازگشت