DocumentCode
2785652
Title
A note on multiplicity of the Laplacian eigenvalue of trees
Author
Xu, Zhenye ; Yang, Chun
Author_Institution
Sch. of Appl. Math., Univ. of Electron. Sci. & Technol. of China, Chengdu, China
fYear
2009
fDate
23-25 Oct. 2009
Firstpage
77
Lastpage
78
Abstract
Considering the multiplicity mT(¿) of eigenvalue ¿ (which equals 1) of Laplacian matrix of all trees, we get three results: When mT(1) equals n-2, the tree is unique, that is star graph K1, n-1; (ii) there exists no trees satisfying mT(1) equals n-3; (iii) When mT(1) equals n-4, this kind of trees are divided into two types. According to the process of proving, we devise a method to construct trees on some desired properties, which have practical value.
Keywords
eigenvalues and eigenfunctions; trees (mathematics); Laplacian matrix; eigenvalue multiplicity; star graph; trees; Concrete; Eigenvalues and eigenfunctions; Laplace equations; Polynomials; Symmetric matrices; Tree graphs; Tree; eigenvalue(s); multiplicity; star graph;
fLanguage
English
Publisher
ieee
Conference_Titel
Apperceiving Computing and Intelligence Analysis, 2009. ICACIA 2009. International Conference on
Conference_Location
Chengdu
Print_ISBN
978-1-4244-5204-0
Electronic_ISBN
978-1-4244-5206-4
Type
conf
DOI
10.1109/ICACIA.2009.5361147
Filename
5361147
Link To Document