Title :
A note on multiplicity of the Laplacian eigenvalue of trees
Author :
Xu, Zhenye ; Yang, Chun
Author_Institution :
Sch. of Appl. Math., Univ. of Electron. Sci. & Technol. of China, Chengdu, China
Abstract :
Considering the multiplicity mT(¿) of eigenvalue ¿ (which equals 1) of Laplacian matrix of all trees, we get three results: When mT(1) equals n-2, the tree is unique, that is star graph K1, n-1; (ii) there exists no trees satisfying mT(1) equals n-3; (iii) When mT(1) equals n-4, this kind of trees are divided into two types. According to the process of proving, we devise a method to construct trees on some desired properties, which have practical value.
Keywords :
eigenvalues and eigenfunctions; trees (mathematics); Laplacian matrix; eigenvalue multiplicity; star graph; trees; Concrete; Eigenvalues and eigenfunctions; Laplace equations; Polynomials; Symmetric matrices; Tree graphs; Tree; eigenvalue(s); multiplicity; star graph;
Conference_Titel :
Apperceiving Computing and Intelligence Analysis, 2009. ICACIA 2009. International Conference on
Conference_Location :
Chengdu
Print_ISBN :
978-1-4244-5204-0
Electronic_ISBN :
978-1-4244-5206-4
DOI :
10.1109/ICACIA.2009.5361147