DocumentCode :
2787349
Title :
A Hierarchical Approach to Maximizing MapReduce Efficiency
Author :
Xiao, Zhiwei ; Chen, Haibo ; Zang, Binyu
Author_Institution :
Parallel Process. Inst., Fudan Univ., Shanghai, China
fYear :
2011
fDate :
10-14 Oct. 2011
Firstpage :
167
Lastpage :
168
Abstract :
In this paper, we argued that Hadoop has limitations in exploiting data locality and task parallelism for multi-core platforms. We then extended Hadoop with a hierarchical MapReduce scheme. An in-memory cache scheme is also seamlessly integrated to cache data that is likely to be accessed in memory. Evaluation showed that the hierarchical scheme outperforms Hadoop ranging from 1.4x to 3.5x.
Keywords :
cache storage; multiprocessing systems; parallel processing; Hadoop; MapReduce efficiency; data locality; hierarchical MapReduce scheme; in-memory cache scheme; multicore platform; task parallelism; Distance measurement; Memory management; Multicore processing; Parallel processing; Protocols; Runtime; Servers; MapReduce; hierarchical approach; performance;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Parallel Architectures and Compilation Techniques (PACT), 2011 International Conference on
Conference_Location :
Galveston, TX
ISSN :
1089-795X
Print_ISBN :
978-1-4577-1794-9
Type :
conf
DOI :
10.1109/PACT.2011.22
Filename :
6113798
Link To Document :
بازگشت