• DocumentCode
    2789341
  • Title

    Fast total variation image restoration with parameter estimation using bayesian inference

  • Author

    Amizic, Bruno ; Babacan, S. Derin ; Michael, K.N. ; Molina, Rafael ; Katsaggelos, Aggelos K.

  • fYear
    2010
  • fDate
    14-19 March 2010
  • Firstpage
    770
  • Lastpage
    773
  • Abstract
    In this paper we propose two fast Total Variation (TV) based algorithms for image restoration by utilizing variational posterior distribution approximation. The unknown image and the hyperparameters for the image and observation models are formulated and estimated simultaneously within a hierachical Bayesian framework, rendering the algorithms fully-automated without any free parameters. Experimental results demonstrate that the proposed algorithms provide restoration results competitive to existing methods in terms of image quality while achieving superior computational efficiency.
  • Keywords
    Bayes methods; image restoration; parameter estimation; Bayesian inference; fast total variation image restoration; hierachical Bayesian framework; observation models; parameter estimation; unknown image; variational posterior distribution approximation; Approximation algorithms; Bayesian methods; Computational efficiency; Image quality; Image restoration; Mathematics; Parameter estimation; Probability distribution; Rendering (computer graphics); TV; Bayesian methods; image restoration; parameter estimation; total variation; variational methods;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on
  • Conference_Location
    Dallas, TX
  • ISSN
    1520-6149
  • Print_ISBN
    978-1-4244-4295-9
  • Electronic_ISBN
    1520-6149
  • Type

    conf

  • DOI
    10.1109/ICASSP.2010.5494994
  • Filename
    5494994