DocumentCode :
2794560
Title :
Parallel Cat Swarm Optimization
Author :
Tsai, Pei-Wei ; Pan, Jeng-Shyang ; Chen, Shyi-Ming ; Liao, Bin-Yih ; Hao, Szu-ping
Author_Institution :
Dept. of Electron. Eng., Nat. Kaohsiung Univ. of Appl. Sci., Kaohsiung
Volume :
6
fYear :
2008
fDate :
12-15 July 2008
Firstpage :
3328
Lastpage :
3333
Abstract :
We investigate a parallel structure of cat swarm optimization (CSO) in this paper, and we call it parallel cat swarm optimization (PCSO). In the experiments, we compare particle swarm optimization (PSO) with CSO and PCSO. The experimental results indicate that both CSO and PCSO perform well. Moreover, PCSO is an effective scheme to improve the convergent speed of cat swarm optimization in case the population size is small and the whole iteration is less.
Keywords :
convergence; optimisation; convergent speed; parallel cat swarm optimization; particle swarm optimization; Ant colony optimization; Cats; Competitive intelligence; Computational intelligence; Computer science; Concurrent computing; Cybernetics; Machine learning; Mechanical engineering; Particle swarm optimization; Evolutionary; computational intelligence; optimization; parallel swarm; swarm intelligent;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning and Cybernetics, 2008 International Conference on
Conference_Location :
Kunming
Print_ISBN :
978-1-4244-2095-7
Electronic_ISBN :
978-1-4244-2096-4
Type :
conf
DOI :
10.1109/ICMLC.2008.4620980
Filename :
4620980
Link To Document :
بازگشت