DocumentCode :
2796500
Title :
Inter-query semantic learning approach to image retrieval
Author :
Fechser, Scott ; Chang, Ran ; Qi, Xiaojun
Author_Institution :
Comput. Sci. Dept., Utah State Univ., Logan, UT, USA
fYear :
2010
fDate :
14-19 March 2010
Firstpage :
1246
Lastpage :
1249
Abstract :
This paper presents an inter-query semantic learning approach for image retrieval with relevance feedback. The proposed system combines the kernel biased discriminant analysis (KBDA) based low-level learning and semantic log file (SLF) based high-level learning to achieve high retrieval accuracy after the first iteration. User´s relevance feedback is utilized for updating both low-level and high-level features of the query image. Extensive experiments demonstrate our system outperforms three peer systems.
Keywords :
image retrieval; relevance feedback; semantic Web; KBDA; image retrieval; inter-query semantic learning approach; kernel biased discriminant analysis; query image; relevance feedback; semantic log file; Feedback; Image databases; Image retrieval; Information retrieval; Kernel; Pattern analysis; Radio frequency; Spatial databases; Support vector machine classification; Support vector machines; CBIR; KBDA; semantic log file;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on
Conference_Location :
Dallas, TX
ISSN :
1520-6149
Print_ISBN :
978-1-4244-4295-9
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2010.5495405
Filename :
5495405
Link To Document :
بازگشت