Title :
An Interval Set Classification Based on Support Vector Machines
Author :
Zhao, Yinggang ; Chen, Qi ; He, Qinming
Author_Institution :
Coll. of Comput. Sci. & Technol., Zhejiang Univ., Hangzhou
Abstract :
The input vector of standard support vector machine (SVM) is n-array attributes. Before new patterns are classified by trained SVM, the measurement of all attribute values is always necessary. In order to make incomplete information patterns can be classified correctly by trained SVM, we extend the inputs vector of SVM to interval input vectors where each unmeasured attribute of input is represented by an interval which includes its possible value, and the operation in classification function was extended to interval operation correspondingly. For the incomplete information input, the value of classification function is the interval operation result. When the output of classification function satisfies the classification condition, the incomplete information input pattern can be classified correctly. Meanwhile the attribute value prior knowledge about interval representation can be utilized fully in the proposed algorithm. Both theory analyze and experiments result all show the present algorithm is practical and effective, and the input attribute measurement cost can also be reduced
Keywords :
pattern classification; support vector machines; classification function; incomplete information; interval representation; interval set classification; support vector machines; Algorithm design and analysis; Computer science; Costs; Educational institutions; Helium; Information science; Measurement standards; Pattern recognition; Support vector machine classification; Support vector machines;
Conference_Titel :
Autonomic and Autonomous Systems and International Conference on Networking and Services, 2005. ICAS-ICNS 2005. Joint International Conference on
Conference_Location :
Papeete, Tahiti
Print_ISBN :
0-7695-2450-8
DOI :
10.1109/ICAS-ICNS.2005.20