DocumentCode :
2801620
Title :
A robust and real-time algorithm for human face tracking using improved particle filtering
Author :
Duan, Qichang ; Zhou, Qi ; Duan, Pan
Author_Institution :
Coll. of Autom., Chongqing Univ., Chongqing, China
fYear :
2009
fDate :
17-19 June 2009
Firstpage :
2421
Lastpage :
2425
Abstract :
In view of the problem that face tracker based on particle filtering using only histogram cue is frequently disturbed by background, a particle swarm optimization particle filtering(PSOPF) face tracking algorithm is proposed. An AdaBoost classifier is used to initialize the target tracking and update the template. To solve the problem of degeneration, the distribution of particles is optimized by PSO. Experimental results show that the proposed algorithm can track the human face steadily and be robust to the rotation of face, illumination changes, background interference and partial occlusion. The demand for general real-time performance(30 fps) can also be satisfied.
Keywords :
face recognition; particle filtering (numerical methods); particle swarm optimisation; target tracking; AdaBoost classifier; background interference; face tracking algorithm; human face tracking; illumination changes; partial occlusion; particle swarm optimization particle filtering; real-time algorithm; robust algorithm; target tracking; Face; Filtering algorithms; Histograms; Humans; Interference; Lighting; Particle swarm optimization; Particle tracking; Robustness; Target tracking; Human Face Tracking; Particle Filtering; Particle Swarm Optimization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control and Decision Conference, 2009. CCDC '09. Chinese
Conference_Location :
Guilin
Print_ISBN :
978-1-4244-2722-2
Electronic_ISBN :
978-1-4244-2723-9
Type :
conf
DOI :
10.1109/CCDC.2009.5192921
Filename :
5192921
Link To Document :
بازگشت