Title :
Monte Carlo hole mobility calculations with a first principles alloy scattering approach
Author :
Zorman, B. ; Krishnan, S. ; Vasileska, D. ; Jialei Xu ; Van Schilfgaarde, M.
Author_Institution :
Arizona State Univ., Tempe, AZ, USA
Abstract :
The authors recently developed a method to incorporate alloy scattering into Monte Carlo simulations using first principles density functional theory (DFT) calculations. A statistical model of the alloy is used, and the atomic pseudopotentials include spin-orbit coupling terms. Strain in the alloy and across interfaces is included by lowering the structural energy with Broyden-Fletcher-Goldfarb-Shanno minimization subject to constraints on the atomic forces determined by the strain.
Keywords :
Monte Carlo methods; S-parameters; alloys; hole mobility; scattering; Broyden-Fletcher-Goldfarb-Shanno minimization; Monte Carlo hole mobility calculations; first principles alloy scattering approach; first principles density functional theory; Alloys; Charge carrier mobility; Monte Carlo methods; Scattering; Scattering parameters;
Conference_Titel :
Computational Electronics, 2004. IWCE-10 2004. Abstracts. 10th International Workshop on
Conference_Location :
West Lafayette, IN, USA
Print_ISBN :
0-7803-8649-3
DOI :
10.1109/IWCE.2004.1407395