• DocumentCode
    2803124
  • Title

    Sparse variable noisy PCA using l0 penalty

  • Author

    Ulfarsson, M.O. ; Solo, V.

  • Author_Institution
    Dept. Electr. Eng., Univ. of Iceland, Reykjavik, Iceland
  • fYear
    2010
  • fDate
    14-19 March 2010
  • Firstpage
    3950
  • Lastpage
    3953
  • Abstract
    Sparse principal component analysis combines the idea of sparsity with principal component analysis (PCA). There are two kinds of sparse PCA; sparse loading PCA (slPCA) which keeps all the variables but zeroes out some of their loadings; and sparse variable PCA (svPCA) which removes whole variables by simultaneously zeroing out all the loadings on some variables. In this paper we propose a model based svPCA method based on the l0 penalty. We compare the detection performance of the proposed method with other subset selection method using a simulated data set. Additionally, we apply the method on a real high dimensional functional magnetic resonance imaging (fMRI) data set.
  • Keywords
    biomedical MRI; expectation-maximisation algorithm; principal component analysis; signal processing; EM algorithm; functional magnetic resonance imaging data set; iterative algorithm; l0 penalty; principal component analysis; sparse loading PCA; sparse variable PCA; sparse variable noisy PCA; subset selection method; Array signal processing; Australia; Biomedical imaging; Input variables; Magnetic noise; Magnetic resonance imaging; Optimization methods; Principal component analysis; Signal analysis; Signal processing algorithms; EM algorithm; Principal Component Analysis (PCA) sparse; l0 optimization;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on
  • Conference_Location
    Dallas, TX
  • ISSN
    1520-6149
  • Print_ISBN
    978-1-4244-4295-9
  • Electronic_ISBN
    1520-6149
  • Type

    conf

  • DOI
    10.1109/ICASSP.2010.5495788
  • Filename
    5495788