• DocumentCode
    2812366
  • Title

    Performance breakdown prediction for maximum-likelihood DoA estimation

  • Author

    Abramovich, Yuri ; Johnson, Bryant

  • Author_Institution
    Defence Sci. & Technol. Organ. (DSTO), Edinburgh, SA, Australia
  • fYear
    2010
  • fDate
    14-19 March 2010
  • Firstpage
    2594
  • Lastpage
    2597
  • Abstract
    “Performance breakdown” of maximum-likelihood (ML) direction-of-arrival (DoA) estimation is analyzed. “Performance breakdown” occurs when signal-to-noise ratio (SNR) and/or training sample volume fall below some threshold values and a ML set of DoA estimates calculated for properly detected number of sources, unavoidably contains an estimation “outlier”. In this paper, we propose a technique to “predict” (i.e. identify, recognize) the underlying scenario and an ML set of DoA estimates, as potentially containing an outlier and specify these potential outliers.
  • Keywords
    direction-of-arrival estimation; maximum likelihood estimation; signal detection; direction-of-arrival estimation; maximum likelihood DOA estimation; performance breakdown prediction; signal detection; signal-to-noise ratio; Australia; Covariance matrix; Direction of arrival estimation; Electric breakdown; Lakes; Maximum likelihood detection; Maximum likelihood estimation; Multiple signal classification; Performance analysis; Signal to noise ratio; Parameter estimation; array signal processing; maximum likelihood estimation; signal detection;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on
  • Conference_Location
    Dallas, TX
  • ISSN
    1520-6149
  • Print_ISBN
    978-1-4244-4295-9
  • Electronic_ISBN
    1520-6149
  • Type

    conf

  • DOI
    10.1109/ICASSP.2010.5496282
  • Filename
    5496282