• DocumentCode
    2812969
  • Title

    Fractional order state space canonical model identification using fractional order information filter

  • Author

    Safarinejadian, Behrouz ; Asad, Mojtaba

  • Author_Institution
    Shiraz Univ. of Technol., Shiraz, Iran
  • fYear
    2015
  • fDate
    3-5 March 2015
  • Firstpage
    65
  • Lastpage
    70
  • Abstract
    In the present paper the identification and estimation problem of a fractional order state space system will be addressed. This paper presents a fractional order information filter and also a hierarchical identification algorithm to identify and estimate parameters and states of a fractional order system. Then, merging this algorithm with fractional order information filter, a novel identification method based on hierarchical identification theory is introduced to reduce the computational complexity. Finally, the applicability and performance of this platform on an exemplary system is examined.
  • Keywords
    computational complexity; filtering theory; parameter estimation; state estimation; state-space methods; computational complexity; estimation problem; fractional order information filter; fractional order state space canonical model identification; fractional order state space system; hierarchical identification algorithm; hierarchical identification theory; identification method; parameters estimation; states estimation; Computational modeling; Information filters; Kalman filters; Mathematical model; Parameter estimation; State estimation; Fractional Order Systems; Fractional Order information filter; Hierarchical Identification Principle; Recursive Identification;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Artificial Intelligence and Signal Processing (AISP), 2015 International Symposium on
  • Conference_Location
    Mashhad
  • Print_ISBN
    978-1-4799-8817-4
  • Type

    conf

  • DOI
    10.1109/AISP.2015.7123479
  • Filename
    7123479