DocumentCode :
2816370
Title :
Detecting gestures in medieval images
Author :
Schlecht, Joseph ; Carqué, Bernd ; Ommer, Björn
Author_Institution :
Interdiscipl. Center for Sci. Comput., Ruprecht-Karls-Univ. Heidelberg, Heidelberg, Germany
fYear :
2011
fDate :
11-14 Sept. 2011
Firstpage :
1285
Lastpage :
1288
Abstract :
We present a template-based detector for gestures visualized in legal manuscripts of the Middle Ages. Depicted persons possess gestures with specific semantic meaning from the perspective of legal history. The hand drawn gestures exhibit noticeable variation in artistic style, size and orientation. They follow a distinct visual pattern, however, without any perspective effects. We present a method to learn a small set of templates representative of the gesture variability. We apply an efficient version of normalized cross-correlation to vote for gesture position, scale and orientation. Non-parametric kernel density estimation is used to identify hypotheses in voting space, and a discriminative verification step ranks the detections. We demonstrate our method on four types of gestures and show promising detection results.
Keywords :
gesture recognition; object detection; gesture variability; hand drawn gestures; medieval images; nonparametric kernel density estimation; normalized cross-correlation; template-based detector; Conferences; Detectors; History; Image processing; Law; Shape; Support vector machines;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2011 18th IEEE International Conference on
Conference_Location :
Brussels
ISSN :
1522-4880
Print_ISBN :
978-1-4577-1304-0
Electronic_ISBN :
1522-4880
Type :
conf
DOI :
10.1109/ICIP.2011.6115669
Filename :
6115669
Link To Document :
بازگشت