DocumentCode :
2816637
Title :
Parameter estimation in Bayesian super-resolution pansharpening using contourlets
Author :
Amro, Israa ; Mateos, Javier ; Vega, Miguel
Author_Institution :
Depto. de Cienc. de la Comput., Univ. de Granada, Granada, Spain
fYear :
2011
fDate :
11-14 Sept. 2011
Firstpage :
1345
Lastpage :
1348
Abstract :
In this paper, we consider the problem of parameter estimation on the super resolution and Bayesian methodology for pansharpening using contourlet transform. The used methodology is able to incorporate prior knowledge on the expected characteristics of the multispectral images, include information on the unknown parameters in the form of hyperprior distributions and estimate the unknown parameters together with the high resolution multispectral image. The experimental results show that the proposed method not only enhances the spatial resolution of the pansharpened image, but also preserves the spectral information of the original multispectral image.
Keywords :
Bayes methods; geophysical image processing; image resolution; parameter estimation; remote sensing; transforms; Bayesian superresolution pansharpening; contourlet transform; high resolution multispectral image; hyperprior distributions; parameter estimation; Approximation methods; Bayesian methods; Noise; Spatial resolution; Strontium; Vectors; contourlets; multispectral image; pansharpening; parameter estimation; remote sensing; super-resolution;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2011 18th IEEE International Conference on
Conference_Location :
Brussels
ISSN :
1522-4880
Print_ISBN :
978-1-4577-1304-0
Electronic_ISBN :
1522-4880
Type :
conf
DOI :
10.1109/ICIP.2011.6115686
Filename :
6115686
Link To Document :
بازگشت