DocumentCode :
2816676
Title :
Multi-scale Non-Local Kernel Regression for super resolution
Author :
Zhang, Haichao ; Yang, Jianchao ; Zhang, Yanning ; Huang, Thomas S.
Author_Institution :
Sch. of Comput. Sci., Northwestern Polytech. Univ., Xi´´an, China
fYear :
2011
fDate :
11-14 Sept. 2011
Firstpage :
1353
Lastpage :
1356
Abstract :
In this paper, we propose an extension of the Non-Local Kernel Regression (NL-KR) method and apply it to super-resolution (SR) tasks. The proposed method extends NL-KR via generalizing the self-similarity from single-scale to multi-scale, and propose an effective SR algorithm using the proposed multi-scale NL-KR model. Experimental results on both synthetic and real images demonstrate the effectiveness of the proposed method.
Keywords :
image resolution; regression analysis; multiscale nonlocal kernel regression; real images; self similarity; super resolution; synthetic images; Image edge detection; Image resolution; Image restoration; Kernel; PSNR; Strontium; Non-Local Kernel Regression; image restoration; local structural regularity; multi-scale self-similarity; super resolution;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2011 18th IEEE International Conference on
Conference_Location :
Brussels
ISSN :
1522-4880
Print_ISBN :
978-1-4577-1304-0
Electronic_ISBN :
1522-4880
Type :
conf
DOI :
10.1109/ICIP.2011.6115688
Filename :
6115688
Link To Document :
بازگشت