DocumentCode :
2818541
Title :
Dynamic Classifier Ensemble Selection Based on GMDH
Author :
Xiao, Jin ; He, Changzheng
Author_Institution :
Bus. Sch., Sichuan Univ., Chengdu, China
Volume :
1
fYear :
2009
fDate :
24-26 April 2009
Firstpage :
731
Lastpage :
734
Abstract :
Dynamic classifier selection (DCS) plays a strategic role in the field of multiple classifiers system. This article introduces group method of data handing (GMDH) theory to DCS, and presents a novel strategy GAES for adaptive classifier ensemble selection first. Then it extends this algorithm and proposes dynamic classifier ensemble selection based on GMDH (GDES). For each test pattern, GDES is able to select an appropriate ensemble from the classifier pool adaptively, determine the combination weights among base classifiers, and complete the combination process automatically. We experimentally test GDES over 6 UCI data sets. The results clearly show that, GDES outperforms the fusion method MAJ (Xu et al., 1992) and also performs slightly better than DCS-LCA (Woods et al., 1997) and KNORA (Ko et al., 2008).
Keywords :
data handling; group theory; pattern classification; UCI data set; dynamic classifier ensemble selection; fusion method; group method of data handing theory; Automatic testing; Distributed control; Feedforward systems; Helium; Heuristic algorithms; Multi-layer neural network; Neural networks; Redundancy; System identification; Voting;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Sciences and Optimization, 2009. CSO 2009. International Joint Conference on
Conference_Location :
Sanya, Hainan
Print_ISBN :
978-0-7695-3605-7
Type :
conf
DOI :
10.1109/CSO.2009.276
Filename :
5193797
Link To Document :
بازگشت