Title :
MRI Induced Torque and Demagnetization in Retention Magnets for a Bone Conduction Implant
Author :
Freden Jansson, Karl-Johan ; Hakansson, Bo ; Reinfeldt, Sabine ; Taghavi, Hamidreza ; Eeg-Olofsson, Mans
Author_Institution :
Dept. of Signals & Syst., Chalmers Univ. of Technol., Gothenburg, Sweden
Abstract :
Performing magnetic resonance imaging (MRI) examinations in patients who use implantable medical devices involve safety risks both for the patient and the implant. Hearing implants often use two permanent magnets, one implanted and one external, for the retention of the external transmitter coil to the implanted receiver coil to achieve an optimal signal transmission. The implanted magnet is subjected to both demagnetization and torque, magnetically induced by the MRI scanner. In this paper, demagnetization and a comparison between measured and simulated induced torque is studied for the retention magnet used in a bone conduction implant (BCI) system. The torque was measured and simulated in a uniform static magnetic field of 1.5 T. The magnetic field was generated by a dipole electromagnet and permanent magnets with two different types of coercive fields were tested. Demagnetization and maximum torque for the high coercive field magnets was 7.7% ± 2.5% and 0.20 ± 0.01 Nm, respectively and 71.4% ± 19.1% and 0.18 ± 0.01 Nm for the low coercive field magnets, respectively. The simulated maximum torque was 0.34 Nm, deviating from the measured torque in terms of amplitude, mainly related to an insufficient magnet model. The BCI implant with high coercive field magnets is believed to be magnetic resonance (MR) conditional up to 1.5 T if a compression band is used around the skull to fix the implant. This is not approved and requires further investigations, and if removal of the implant is needed, the surgical operation is expected to be simple.
Keywords :
biomedical MRI; bone; demagnetisation; prosthetics; BCI implant; MRI induced torque; MRI scanner; bone conduction implant system; coercive fields; demagnetization; dipole electromagnet; external transmitter coil; hearing implants; implantable medical devices; implanted receiver coil; magnetic flux density 1.5 T; magnetic resonance imaging; measured torque; optimal signal transmission; permanent magnets; retention magnets; safety risks; simulated maximum torque; skull; surgical operation; Demagnetization; Human computer interaction; Implants; Magnetic field measurement; Magnetic flux; Magnetic resonance imaging; Torque; Bone conduction implant (BCI); demagnetization; magnetic resonance (MR) safety; magnetic torque; retention magnets;
Journal_Title :
Biomedical Engineering, IEEE Transactions on
DOI :
10.1109/TBME.2014.2309978