Title :
Removing shadows from images using color and near-infrared
Author :
Salamati, N. ; Germain, A. ; Susstrunk, Sabine
Author_Institution :
Sch. of Comput. & Commun. Sci., Ecole Polytech. Fed. de Lausanne (EPFL), Lausanne, Switzerland
Abstract :
Shadows often introduce errors in the performance of computer vision algorithms, such as object detection and tracking. This paper proposes a method to remove shadows from real images based on a probability shadow map. The probability shadow map identifies how much light is impinging on a surface. The lightness of shadowed regions in an image is increased and then the color of that part of the surface is corrected so that it matches the lit part of the surface. The result is compared with two other shadow removal frameworks. The advantage of our method is that after removal, the texture and all the details in the shadowed regions remain intact.
Keywords :
computer vision; image colour analysis; object detection; object tracking; probability; color image; computer vision algorithm; image shadow removal; near-infrared image; near-infrared technique; object detection; object tracking; probability shadow map; Color; Conferences; Image color analysis; Image edge detection; Image segmentation; Lighting;
Conference_Titel :
Image Processing (ICIP), 2011 18th IEEE International Conference on
Conference_Location :
Brussels
Print_ISBN :
978-1-4577-1304-0
Electronic_ISBN :
1522-4880
DOI :
10.1109/ICIP.2011.6115788