Title :
On removal of froissart doublets in Pade - Laplace method
Author :
Ibryaeva, Olga L. ; Adukov, Victor M.
Author_Institution :
Differential Equations & Dynamical Syst. Dept., South Ural State Univ., Chelyabinsk, Russia
Abstract :
A new algorithm for computing Pade approximants is proposed. It is based on the results concerning the kernel structure of the Toeplitz matrices. Due to the proper choice of a denominator of a Pade approximant, it allows to avoid Froissart doublets appearance in singular blocks of the Pade table. We illustrate the effectiveness of our algorithm through numerical examples.
Keywords :
Toeplitz matrices; approximation theory; singular value decomposition; Froissart doublets removal; Pade approximant computing; Pade table; Pade-Laplace method; Toeplitz matrices; kernel structure; singular blocks; Approximation algorithms; Kernel; Matrix decomposition; Noise; Poles and zeros; Polynomials; Vectors; Froissart doublets; Pade - Laplace method; Pade approximant; Pade table; singular value decomposition;
Conference_Titel :
Telecommunications and Signal Processing (TSP), 2012 35th International Conference on
Conference_Location :
Prague
Print_ISBN :
978-1-4673-1117-5
DOI :
10.1109/TSP.2012.6256375