DocumentCode :
2819311
Title :
Resolution-invariant separable ARMA modeling of images
Author :
Bourquard, Aurélien ; Kirshner, Hagai ; Unser, Michael
Author_Institution :
Biomed. Imaging Group, Ecole Polytech. Fed. de Lausanne (EPFL), Lausanne, Switzerland
fYear :
2011
fDate :
11-14 Sept. 2011
Firstpage :
1833
Lastpage :
1836
Abstract :
We suggest a continuous-domain stochastic modeling of images that is invariant to spatial resolution. Specifically, we are proposing an estimator that is calibrated with respect to the sampling step, and that can potentially handle aliased data. Motivated by Markov random fields, we assume a continuous-domain ARMA model and suggest an algorithm for estimating the continuous-domain parameters from the sampled data. The continuous-domain parameters we estimate provide features that can further be used for image classification, segmentation and interpolation, regardless of sampling interval values and of aliasing effects that may appear in the digital image. Experimental results indicate that the proposed approach is preferable over a discrete-domain ARMA modeling.
Keywords :
Markov processes; autoregressive moving average processes; image classification; image resolution; image segmentation; interpolation; random processes; Markov random field; continuous-domain ARMA model; continuous-domain parameter estimation; continuous-domain stochastic modeling; digital image; discrete-domain ARMA modeling; image classification; image segmentation; interpolation; resolution-invariant separable ARMA modeling; sampling step; spatial resolution; Estimation; Mathematical model; Poles and zeros; Spatial resolution; Stochastic processes; ARMA Identification; Sampling;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2011 18th IEEE International Conference on
Conference_Location :
Brussels
ISSN :
1522-4880
Print_ISBN :
978-1-4577-1304-0
Electronic_ISBN :
1522-4880
Type :
conf
DOI :
10.1109/ICIP.2011.6115822
Filename :
6115822
Link To Document :
بازگشت