DocumentCode :
2820007
Title :
Using Monte Carlo Tree Search for replanning in a multistage simultaneous game
Author :
Beard, Daniel ; Hingston, Philip ; Masek, Martin
Author_Institution :
Sch. of Comput. & Security Sci., Edith Cowan Univ., Perth, WA, Australia
fYear :
2012
fDate :
10-15 June 2012
Firstpage :
1
Lastpage :
8
Abstract :
In this study, we introduce MC-TSAR, a Monte Carlo Tree Search algorithm for strategy selection in simultaneous multistage games. We evaluate the algorithm using a battle planning scenario in which replanning is possible. We show that the algorithm can be used to select a strategy that approximates a Nash equilibrium strategy, taking into account the possibility of switching strategies part way through the execution of the scenario in the light of new information on the progress of the battle.
Keywords :
Monte Carlo methods; game theory; tree searching; MC-TSAR; Monte Carlo tree search algorithm; Nash equilibrium strategy; battle planning scenario; multistage simultaneous game replanning; strategy selection; switching strategies; Approximation algorithms; Approximation methods; Games; Monte Carlo methods; Nash equilibrium; Planning; Security;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation (CEC), 2012 IEEE Congress on
Conference_Location :
Brisbane, QLD
Print_ISBN :
978-1-4673-1510-4
Electronic_ISBN :
978-1-4673-1508-1
Type :
conf
DOI :
10.1109/CEC.2012.6256428
Filename :
6256428
Link To Document :
بازگشت