• DocumentCode
    2820172
  • Title

    A preliminary study of a new multi-objective optimization algorithm

  • Author

    Lattarulo, Valerio ; Parks, Geoffrey T.

  • Author_Institution
    Dept. of Eng., Univ. of Cambridge, Cambridge, UK
  • fYear
    2012
  • fDate
    10-15 June 2012
  • Firstpage
    1
  • Lastpage
    8
  • Abstract
    This paper presents a preliminary study which describes and evaluates a multi-objective (MO) version of a recently created single objective (SO) optimization algorithm called the “Alliance Algorithm” (AA). The algorithm is based on the metaphorical idea that several tribes, with certain skills and resource needs, try to conquer an environment for their survival and to ally together to improve the likelihood of conquest. The AA has given promising results in several fields to which has been applied, thus the development of a MO variant (MOAA) is a natural extension. Here the MOAA´s performance is compared with two well-known MO algorithms: NSGA-II and SPEA-2. The performance measures chosen for this study are the convergence and diversity metrics. The benchmark functions chosen for the comparison are from the ZDT and OKA families and the main classical MO problems. The results show that the three algorithms have similar overall performance. Thus, it is not possible to identify a best algorithm for all the problems; the three algorithms show a certain complementarity because they offer superior performance for different classes of problems.
  • Keywords
    genetic algorithms; MO algorithms; MO variant; NSGA-II; OKA families; SPEA-2; ZDT families; alliance algorithm; benchmark functions; diversity metrics; multiobjective optimization algorithm; natural extension; single objective optimization algorithm; Convergence; Euclidean distance; Genetic algorithms; Optimization; Standards; Vectors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Evolutionary Computation (CEC), 2012 IEEE Congress on
  • Conference_Location
    Brisbane, QLD
  • Print_ISBN
    978-1-4673-1510-4
  • Electronic_ISBN
    978-1-4673-1508-1
  • Type

    conf

  • DOI
    10.1109/CEC.2012.6256437
  • Filename
    6256437