DocumentCode :
2821296
Title :
Automatic sleep staging using a single-channel EEG modeling by Kalman Filter and HMM
Author :
Rossow, Alex Brandão ; Salles, Evandro Ottoni Teatini ; Côco, Klaus Fabian
Author_Institution :
Dept. de Eng. Eletr., Univ. Fed. do Espirito Santo, Vitoria, Brazil
fYear :
2011
fDate :
6-8 Jan. 2011
Firstpage :
1
Lastpage :
6
Abstract :
This paper proposes an automatic classification system for sleep stage of persons. The sleep condition of a person is monitored by one channel electroencephalogram (EEG). Because of the non stationary nature of the signal, for the feature extraction task, it is used the coefficients of a Kalman Filter modeling. The classification task is realized by a K-Means Segmental HMM (Hidden Markov Model). To evaluate the performance of the system, it is used the MIT-BIH Polysomnographic EEG database. At the end, the results are presented and discussed.
Keywords :
Kalman filters; electroencephalography; hidden Markov models; sleep; Hidden Markov Model; K-Means Segmental HMM; Kalman Filter; MIT-BIH Polysomnographic EEG database; automatic sleep staging; electroencephalogram; single-channel EEG modeling; Brain modeling; Electroencephalography; Hidden Markov models; Kalman filters; Mathematical model; Testing; Training;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Biosignals and Biorobotics Conference (BRC), 2011 ISSNIP
Conference_Location :
Vitoria
Print_ISBN :
978-1-4244-8212-2
Type :
conf
DOI :
10.1109/BRC.2011.5740661
Filename :
5740661
Link To Document :
بازگشت