DocumentCode :
2821609
Title :
A geometrically faithful memetic algorithm for searching sparse representations of EEG signals
Author :
Qiu, Jun-Wei ; Zao, John K. ; Chou, Yu-Hsiang
Author_Institution :
Dept. of Comput. Sci., Nat. Chiao Tung Univ. (NCTU), Hsinchu, Taiwan
fYear :
2012
fDate :
10-15 June 2012
Firstpage :
1
Lastpage :
7
Abstract :
This paper presents a memetic algorithm, christened the natural memetic pursuit (NMP), that was designed to search for sparse signal representations. This algorithm combines global sampling based on a Grassmannian dictionary of atomic signals with local search using natural gradient decent in the signal parameter space. Performance of the algorithm was demonstrated by analyzing Jung and Makig´s ERP data sets. It can obtain unbiased sparse representations of EEG signals in far less iteration than its predecessor, the stochastic matching pursuit (SMP).
Keywords :
electroencephalography; signal representation; EEG signal; ERP data sets; Grassmannian dictionary; atomic signal; global sampling; local search; memetic algorithm; natural gradient decent; natural memetic pursuit; searching sparse representation; signal parameter space; sparse signal representation; stochastic matching pursuit; unbiased sparse representation; Algorithm design and analysis; Dictionaries; Matching pursuit algorithms; Memetics; Signal processing algorithms; Signal representations; Time frequency analysis; EEG Signal Processing; Grassmannian Gabor Dictionaries; Memetic Algorithm; Natural Gradient; Sparse Signal Representation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation (CEC), 2012 IEEE Congress on
Conference_Location :
Brisbane, QLD
Print_ISBN :
978-1-4673-1510-4
Electronic_ISBN :
978-1-4673-1508-1
Type :
conf
DOI :
10.1109/CEC.2012.6256515
Filename :
6256515
Link To Document :
بازگشت