DocumentCode :
2821995
Title :
An Effective Compound Clustering Algorithm
Author :
Zhang, Jianlin ; Zou, Wensheng ; Xu, Jianfeng ; Liu, Lan
Author_Institution :
Nanchang Univ., Nanchang, China
Volume :
2
fYear :
2009
fDate :
24-26 April 2009
Firstpage :
373
Lastpage :
376
Abstract :
There usually exit some reactive and redundant attributes in clustering objects. In order to improve the efficiency and veracity of clustering, we must delete those reactive and redundant attributes before clustering. A compound clustering algorithm is proposed in this paper. The algorithm first introduces fuzzy clustering to classify attributes, and then uses Fuzzy C-means (FCM) algorithm to partition objects and verify which attributes are redundant. The effectiveness of the proposed compound clustering algorithm is demonstrated with the Fisher Iris data set.
Keywords :
fuzzy set theory; pattern clustering; Fisher Iris data set; effective compound clustering algorithm; fuzzy c-mean algorithm; fuzzy clustering; Clustering algorithms; Clustering methods; Data analysis; Data mining; Iris; Mathematics; Partitioning algorithms; Pattern recognition; Symmetric matrices; Text analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Sciences and Optimization, 2009. CSO 2009. International Joint Conference on
Conference_Location :
Sanya, Hainan
Print_ISBN :
978-0-7695-3605-7
Type :
conf
DOI :
10.1109/CSO.2009.31
Filename :
5193974
Link To Document :
بازگشت