DocumentCode :
2823193
Title :
Multi-scale 3D representation via volumetric quasi-random scale space
Author :
Mishra, Akshaya ; Wong, Alexander ; Fieguth, Paul ; Clausi, David A.
Author_Institution :
Dept. of Syst. Design Eng., Univ. of Waterloo, Waterloo, ON, Canada
fYear :
2011
fDate :
11-14 Sept. 2011
Firstpage :
2105
Lastpage :
2108
Abstract :
A novel nonlinear volumetric scale-space framework is proposed for multi-scale volumetric data representation. The problem is formulated as a Bayesian least-squares estimator, and a quasi-random density estimation approach is introduced for estimating the posterior distribution between consecutive volumetric scale space realizations. Experimental results using both synthetic and real MR volumetric data demonstrate the effectiveness of the proposed scale-space framework for three-dimensional representation with significantly better structural separation and localization across all scales when compared to existing volumetric scale-space frameworks such as volumetric anisotropic diffusion and volumetric linear Gaussian scale-space, especially under scenarios with high noise levels.
Keywords :
Bayes methods; data structures; image representation; least squares approximations; Bayesian least squares estimator; Gaussian scale-space; MR volumetric data; multiscale 3D representation; nonlinear volumetric scale space framework; quasi-random density estimation; scale-space framework; structural separation; volumetric quasirandom scale space; Anisotropic magnetoresistance; Conferences; Estimation; Image edge detection; Noise; Three dimensional displays; Scale space; multi-scale; random sampling; volumetric representation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2011 18th IEEE International Conference on
Conference_Location :
Brussels
ISSN :
1522-4880
Print_ISBN :
978-1-4577-1304-0
Electronic_ISBN :
1522-4880
Type :
conf
DOI :
10.1109/ICIP.2011.6116025
Filename :
6116025
Link To Document :
بازگشت