• DocumentCode
    2825267
  • Title

    Parameter identification for stochastic hybrid models of biological interaction networks

  • Author

    Cinquemani, Eugenio ; Porreca, Riccardo ; Ferrari-Trecate, Giancarlo ; Lygeros, John

  • Author_Institution
    ETH Zurich, Zurich
  • fYear
    2007
  • fDate
    12-14 Dec. 2007
  • Firstpage
    5180
  • Lastpage
    5185
  • Abstract
    Based on a model of subtilin production by Bacillus subtilis, in this paper we discuss the parameter identification of stochastic hybrid dynamics that are typically found in biological regulatory networks. In accordance with the structure of the model, identification is split in two subproblems: estimation of the genetic network regulating subtilin production from gene expression data, and estimation of population dynamics based on nutrient and population profiles. Techniques for parameter estimation from sparse and irregularly sampled observations are developed and applied to simulated data. Numerical results are provided to show the effectiveness of our methods.
  • Keywords
    biology; parameter estimation; stochastic processes; biological interaction networks; parameter identification; stochastic hybrid models; Antibiotics; Biological interactions; Biological processes; Biological system modeling; Gene expression; Genetics; Parameter estimation; Production; Stochastic processes; Stochastic systems;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control, 2007 46th IEEE Conference on
  • Conference_Location
    New Orleans, LA
  • ISSN
    0191-2216
  • Print_ISBN
    978-1-4244-1497-0
  • Electronic_ISBN
    0191-2216
  • Type

    conf

  • DOI
    10.1109/CDC.2007.4434647
  • Filename
    4434647