DocumentCode :
2826199
Title :
A A-IFSs Based Image Segmentation Methodology for Gait Analysis
Author :
Couto, Pedro ; Filipe, Vitor ; Melo-Pinto, Pedro ; Bustince, Humberto ; Barrenechea, Edurne
Author_Institution :
Eng. Dept., CITAB UTAD Univ., Vila Real, Portugal
fYear :
2009
fDate :
Nov. 30 2009-Dec. 2 2009
Firstpage :
1318
Lastpage :
1323
Abstract :
In this work, image segmentation is addressed as the starting point within a motion analysis methodology intended for biomechanics behavior characterization. First, we propose a general segmentation framework that uses Atanassov´s intuitionistic fuzzy sets (A-IFSs) to determine the optimal image threshold value. Atanassov´s intuitionistic fuzzy index values are used for representing the unknowledge/ignorance of an expert on determining whether a pixel belongs to the background or the object of the image. Then, we introduce an extension of this methodology that uses a heuristic based multi-threshold approach to determine the optimal threshold. Experimental results are presented.
Keywords :
biology computing; fuzzy set theory; gait analysis; image motion analysis; image segmentation; Atanassov intuitionistic fuzzy sets; biomechanics behavior characterization; gait analysis; image segmentation; motion analysis; multi-threshold approach; optimal image threshold value; Fuzzy sets; Gray-scale; Image analysis; Image motion analysis; Image segmentation; Intelligent systems; Kinematics; Motion analysis; Pixel; Tracking; Atanassov´s intuitionistic fuzzy sets; fuzzy logic; image segmentation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Systems Design and Applications, 2009. ISDA '09. Ninth International Conference on
Conference_Location :
Pisa
Print_ISBN :
978-1-4244-4735-0
Electronic_ISBN :
978-0-7695-3872-3
Type :
conf
DOI :
10.1109/ISDA.2009.44
Filename :
5363865
Link To Document :
بازگشت