DocumentCode :
2826205
Title :
Kernel Pooled Local Subspaces for Classification
Author :
Zhang, Peng ; Peng, Jing ; Domeniconi, Carlotta
Author_Institution :
Tulane University
Volume :
6
fYear :
2003
fDate :
16-22 June 2003
Firstpage :
63
Lastpage :
63
Abstract :
We study the use of kernel subspace methods for learning low-dimensional representations for classification. We propose a kernel pooled local discriminant subspace method and compare it against several competing techniques: Principal Component Analysis (PCA), Kernel PCA (KPCA), and linear local pooling in classification problems. We evaluate the classification performance of the nearest-neighbor rule with each subspace representation. The experimental results demonstrate the effectiveness and performance superiority of the kernel pooled subspace method over competing methods such as PCA and KPCA in some classification problems.
Keywords :
Computer vision; Conferences; Covariance matrix; Data mining; Eigenvalues and eigenfunctions; Face recognition; Independent component analysis; Kernel; Pattern recognition; Principal component analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition Workshop, 2003. CVPRW '03. Conference on
Conference_Location :
Madison, Wisconsin, USA
ISSN :
1063-6919
Print_ISBN :
0-7695-1900-8
Type :
conf
DOI :
10.1109/CVPRW.2003.10060
Filename :
4624324
Link To Document :
بازگشت