DocumentCode :
2826713
Title :
Statistically Robust Approach to Lens Distortion Calibration with Model Selection
Author :
Taha El-Melegy, Moumen ; Farag, Aly A.
Author_Institution :
Assiut University, Egypt
Volume :
8
fYear :
2003
fDate :
16-22 June 2003
Firstpage :
91
Lastpage :
91
Abstract :
This paper addresses the problem of calibrating camera lens distortion, which can be significant in medium to wide angle lenses. While almost all existing nonmetric distortion calibration methods need user involvement in one form or another,we present an approach to distortion calibration based on the robust the-least-median-of-squares (LMedS) estimator. Our approach is thus able to proceed in a ful ly-automatic manner while being less sensitive to erroneous input data such as image curves that are mistakenly considered as projections of 3D linear segments. Our approach uniquely uses fast, closed-form solutions to the distortion coefficients, which serve as an initial point for a non-linear optimization algorithm to straighten imaged lines. Moreover we propose a method for distortion model selection based on geometrical inference.Successful experiments to evaluate the performance of this approach on synthetic and real data are reported.
Keywords :
Calibration; Cameras; Closed-form solution; Computer vision; Image segmentation; Layout; Lenses; Nonlinear distortion; Robustness; Solid modeling;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition Workshop, 2003. CVPRW '03. Conference on
Conference_Location :
Madison, Wisconsin, USA
ISSN :
1063-6919
Print_ISBN :
0-7695-1900-8
Type :
conf
DOI :
10.1109/CVPRW.2003.10096
Filename :
4624354
Link To Document :
بازگشت