DocumentCode
2828945
Title
Facial expression recognition using clustering discriminant Non-negative Matrix Factorization
Author
Nikitidis, Symeon ; Tefas, Anastasios ; Nikolaidis, Nikos ; Pitas, Ioannis
Author_Institution
Dept. of Inf., Aristotle Univ. of Thessaloniki, Thessaloniki, Greece
fYear
2011
fDate
11-14 Sept. 2011
Firstpage
3001
Lastpage
3004
Abstract
Non-negative Matrix Factorization (NMF) is among the most popular subspace methods widely used in a variety of image processing problems. Recently, a discriminant NMF method that incorporates Linear Discriminant Analysis criteria and achieves an efficient decomposition of the provided data to its discriminant parts has been proposed. However, this approach poses several limitations since it assumes that the underline data distribution forms compact sets which is often unrealistic. To remedy this limitation we regard that data inside each class form various number of clusters and apply a Clustering based Discriminant Analysis. The proposed method combines appropriate discriminant constraints in the NMF decomposition cost function in order to address the problem of finding discriminant projections that enhance class separability in the reduced dimensional projection space. Experimental results performed on the Cohn-Kanade database verified the effectiveness of the proposed method in the facial expression recognition task.
Keywords
face recognition; matrix decomposition; Cohn-Kanade database; clustering discriminant nonnegative matrix factorization; facial expression recognition; image processing problems; linear discriminant analysis; reduced dimensional projection space; Accuracy; Algorithm design and analysis; Conferences; Databases; Face recognition; Image processing; Vectors; Non-negative matrix factorization; clustering discriminant analysis; facial expression recognition; sub-space methods;
fLanguage
English
Publisher
ieee
Conference_Titel
Image Processing (ICIP), 2011 18th IEEE International Conference on
Conference_Location
Brussels
ISSN
1522-4880
Print_ISBN
978-1-4577-1304-0
Electronic_ISBN
1522-4880
Type
conf
DOI
10.1109/ICIP.2011.6116294
Filename
6116294
Link To Document