DocumentCode :
2829257
Title :
On 2-Site Voronoi Diagrams under Geometric Distance Functions
Author :
Barequet, Gill ; Dickerson, Matthew T. ; Eppstein, David ; Hodorkovsky, David ; Vyatkina, Kira
Author_Institution :
Dept. of Comput. Sci., Technion - Israel Inst. of Technol., Haifa, Israel
fYear :
2011
fDate :
28-30 June 2011
Firstpage :
31
Lastpage :
38
Abstract :
We revisit a new type of a Voronoi diagram, in which distance is measured from a point to a pair of points. We consider a few more such distance functions, based on geometric primitives, and analyze the structure and complexity of the nearest- and furthest-neighbor Voronoi diagrams of a point set with respect to these distance functions.
Keywords :
computational geometry; 2-site Voronoi diagrams; furthest-neighbor Voronoi diagrams; geometric distance functions; nearest-neighbor Voronoi diagrams; Complexity theory; Computer science; Context; Electronic mail; Joining processes; Machinery; Davenport-Schinzel theory; crossing-number lemma; distance function; lower envelope;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Voronoi Diagrams in Science and Engineering (ISVD), 2011 Eighth International Symposium on
Conference_Location :
Qingdao
Print_ISBN :
978-1-4577-1026-1
Electronic_ISBN :
978-0-7695-4483-0
Type :
conf
DOI :
10.1109/ISVD.2011.13
Filename :
5988944
Link To Document :
بازگشت