Title :
Efficient Multidimensional Harmonic Retrieval: A Hierarchical Signal Separation Framework
Author :
Chun-Hung Lin ; Wen-Hsien Fang
Author_Institution :
Dept. of Electron. & Comput. Eng., Nat. Taiwan Univ. of Sci. & Technol., Taipei, Taiwan
Abstract :
This paper presents a low-complexity one-dimensional (1-D) Unitary Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT)-based algorithm for multidimensional harmonic retrieval (MHR) problems based on an HIerarchical Signal Separation (HISS) technique, which interleaves the parameter estimation and filtering processes. The filtering process not only progressively partitions the signals with close parameters into separate groups, but also reduces the power of the additive noise, both of which entail higher parameter estimation accuracy. The pairing of the estimated parameters is also automatically achieved. Simulations show that the new algorithm provides satisfactory performance compared with previous works but with drastically reduced computations.
Keywords :
filtering theory; harmonics; matrix decomposition; parameter estimation; 1D unitary estimation; ESPRIT; HISS; MHR; additive noise; filtering process; hierarchical signal separation framework; multidimensional harmonic retrieval; rotational invariance technique; signal parameter estimation; subspace algorithm; Covariance matrix; Estimation; Harmonic analysis; Noise; Parameter estimation; Signal processing algorithms; Source separation; Filtering; M-D harmonic retrieval; low-complexity algorithm; parameter estimation; subspace algorithm;
Journal_Title :
Signal Processing Letters, IEEE
DOI :
10.1109/LSP.2013.2238528