• DocumentCode
    2832267
  • Title

    Parameter Estimations in Linear Regression Models with AR(2) Errors in Which the Parameters Have a Special Relationship

  • Author

    Xu, Wenke ; Liu, Fuxiang ; Li, Fengri ; Wu, Haijun ; Jin, Xuejing

  • Author_Institution
    Northeast Forestry Univ., Harbin, China
  • fYear
    2009
  • fDate
    11-13 Dec. 2009
  • Firstpage
    1
  • Lastpage
    4
  • Abstract
    The purpose of this paper is to study parameters estimations in linear regression model with AR(2) errors ¿t = ¿1¿t-1 + ¿2¿t-2 - ¿t, t = 1, 2,¿, n in which the parameters have a special relationship ¿2 = ¿1 2. For the properties of variance-covariance matrix ¿ , This kind of models are transformed into the standard linear regression models without autocorrelation errors and apply the method of cycle generalized least squares (CGLS) to estimate parameters. Simulation results show that efficiency of CGLS method is superior over the method of generalized least squares (GLS) under mean square error criterion.
  • Keywords
    parameter estimation; regression analysis; autocorrelation errors; cycle generalized least squares; linear regression model; mean square error criterion; parameter estimation; variance-covariance matrix; Autocorrelation; Covariance matrix; Equations; Gaussian processes; Least squares approximation; Least squares methods; Linear regression; Mean square error methods; Parameter estimation; Vectors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Computational Intelligence and Software Engineering, 2009. CiSE 2009. International Conference on
  • Conference_Location
    Wuhan
  • Print_ISBN
    978-1-4244-4507-3
  • Electronic_ISBN
    978-1-4244-4507-3
  • Type

    conf

  • DOI
    10.1109/CISE.2009.5364199
  • Filename
    5364199