Title :
Minimum message length autoregressive model order selection
Author :
Fitzgibbon, Leigh J. ; Dowe, David L. ; Vahid, Farshid
Author_Institution :
Sch. of Comput. Sci. & Software Eng., Monash Univ., Clayton, Vic., Australia
Abstract :
We derive a minimum message length (MML) estimator for stationary and nonstationary autoregressive models using the Wallace and Freeman approximation. The MML estimator´s model selection performance is empirically compared with AIC, AICc, BIC and HQ in a Monte Carlo experiment by uniformly sampling from the autoregressive stationarity region. Generally applicable, uniform priors are used on the coefficients, model order and log σ2 for the MML estimator. The experimental results show the MML estimator to have the best overall average mean squared prediction error and best ability to choose the true model order.
Keywords :
Monte Carlo methods; autoregressive processes; information theory; mean square error methods; parameter estimation; Freeman approximation; Monte Carlo methods; Wallace approximation; average mean squared prediction error method; minimum message length estimator; nonstationary autoregressive models; order selection model; stationary autoregressive models; Artificial intelligence; Bayesian methods; Computer science; Econometrics; Linear regression; Monte Carlo methods; Polynomials; Predictive models; Software engineering; Statistics;
Conference_Titel :
Intelligent Sensing and Information Processing, 2004. Proceedings of International Conference on
Print_ISBN :
0-7803-8243-9
DOI :
10.1109/ICISIP.2004.1287697