DocumentCode :
2834861
Title :
Minimum message length autoregressive model order selection
Author :
Fitzgibbon, Leigh J. ; Dowe, David L. ; Vahid, Farshid
Author_Institution :
Sch. of Comput. Sci. & Software Eng., Monash Univ., Clayton, Vic., Australia
fYear :
2004
fDate :
2004
Firstpage :
439
Lastpage :
444
Abstract :
We derive a minimum message length (MML) estimator for stationary and nonstationary autoregressive models using the Wallace and Freeman approximation. The MML estimator´s model selection performance is empirically compared with AIC, AICc, BIC and HQ in a Monte Carlo experiment by uniformly sampling from the autoregressive stationarity region. Generally applicable, uniform priors are used on the coefficients, model order and log σ2 for the MML estimator. The experimental results show the MML estimator to have the best overall average mean squared prediction error and best ability to choose the true model order.
Keywords :
Monte Carlo methods; autoregressive processes; information theory; mean square error methods; parameter estimation; Freeman approximation; Monte Carlo methods; Wallace approximation; average mean squared prediction error method; minimum message length estimator; nonstationary autoregressive models; order selection model; stationary autoregressive models; Artificial intelligence; Bayesian methods; Computer science; Econometrics; Linear regression; Monte Carlo methods; Polynomials; Predictive models; Software engineering; Statistics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Sensing and Information Processing, 2004. Proceedings of International Conference on
Print_ISBN :
0-7803-8243-9
Type :
conf
DOI :
10.1109/ICISIP.2004.1287697
Filename :
1287697
Link To Document :
بازگشت