DocumentCode :
2834905
Title :
Near optimal machine learning based random test generation
Author :
Shakeri, Niki ; Nemati, Nastaran ; Ahmadabadi, Majid Nili ; Navabi, Zainalabedin
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Tehran, Tehran, Iran
fYear :
2010
fDate :
17-20 Sept. 2010
Firstpage :
420
Lastpage :
424
Abstract :
Optimized test generation techniques are required to overcome the ever increasing test cost of digital systems. In this work a near optimal machine learning based approach is proposed to improve the random test generation techniques. The improvements of the proposed method over previous works are exercised in an HDL environment and results for ISCAS benchmarks are reported.
Keywords :
automatic test pattern generation; benchmark testing; learning (artificial intelligence); optimisation; HDL environment; ISCAS benchmark; digital system; optimal machine learning based random test generation; optimized test generation technique; Circuit faults; Databases; Genetic algorithms; Hardware design languages; Machine learning; Machine learning algorithms; Monte Carlo methods;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Design & Test Symposium (EWDTS), 2010 East-West
Conference_Location :
St. Petersburg
Print_ISBN :
978-1-4244-9555-9
Type :
conf
DOI :
10.1109/EWDTS.2010.5742082
Filename :
5742082
Link To Document :
بازگشت