• DocumentCode
    2835552
  • Title

    Design of a FIR Filter for Image Restoration using Principal Component Neural Networks

  • Author

    Gupta, Pradeep K. ; Kanhirodan, Rajan

  • Author_Institution
    Indian Inst. of Sci., Bangalore
  • fYear
    2006
  • fDate
    15-17 Dec. 2006
  • Firstpage
    1177
  • Lastpage
    1182
  • Abstract
    The neural network finds its application in many image denoising applications because of its inherent characteristics such as nonlinear mapping and self-adaptiveness. The design of filters largely depends on the a-priori knowledge about the type of noise. Due to this, standard filters are application and image specific. Widely used filtering algorithms reduce noisy artifacts by smoothing. However, this operation normally results in smoothing of the edges as well. On the other hand, sharpening filters enhance the high frequency details making the image non-smooth. An integrated general approach to design a finite impulse response filter based on principal component neural network (PCNN) is proposed in this study for image filtering, optimized in the sense of visual inspection and error metric. This algorithm exploits the inter-pixel correlation by iteratively updating the filter coefficients using PCNN. This algorithm performs optimal smoothing of the noisy image by preserving high and low frequency features. Evaluation results show that the proposed filter is robust under various noise distributions. Further, the number of unknown parameters is very few and most of these parameters are adaptively obtained from the processed image.
  • Keywords
    FIR filters; image denoising; image restoration; neural nets; optimisation; principal component analysis; smoothing methods; FIR filter; finite impulse response filter; image denoising; image restoration; noisy artifact reduction; nonlinear mapping; optimization; principal component neural networks; self-adaptiveness; smoothing; Filtering algorithms; Finite impulse response filter; Frequency; Image denoising; Image restoration; Iterative algorithms; Low-frequency noise; Neural networks; Noise reduction; Smoothing methods;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Industrial Technology, 2006. ICIT 2006. IEEE International Conference on
  • Conference_Location
    Mumbai
  • Print_ISBN
    1-4244-0726-5
  • Electronic_ISBN
    1-4244-0726-5
  • Type

    conf

  • DOI
    10.1109/ICIT.2006.372447
  • Filename
    4237769