DocumentCode :
2840144
Title :
Designing templates for cellular neural networks using particle swarm optimization
Author :
Firpi, Hiram A. ; Goodman, Erik D.
Author_Institution :
Dept. of Electr. & Comput. Eng., Michigan State Univ., East Lansing, MI, USA
fYear :
2004
fDate :
13-15 Oct. 2004
Firstpage :
119
Lastpage :
123
Abstract :
Designing or learning of templates for cellular neural networks constitutes one of the crucial research problems of this paradigm. In this work, we present the use of a particle swarm optimizer, a global search algorithm, to design a template set for a CNN. A brief overview of the algorithms and methods is given. Design of popular templates is performed using the search algorithm described.
Keywords :
cellular neural nets; optimisation; search problems; cellular neural network; global search algorithm; particle swarm optimization; templates design; Algorithm design and analysis; Birds; Cellular neural networks; Design methodology; Image edge detection; Image processing; Learning systems; Neurons; Nonlinear equations; Particle swarm optimization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2004. ISIT 2004. Proceedings. International Symposium on
ISSN :
1550-5219
Print_ISBN :
0-7695-2250-5
Type :
conf
DOI :
10.1109/AIPR.2004.21
Filename :
1409685
Link To Document :
بازگشت