DocumentCode :
2841668
Title :
Computable Analysis of a Boundary-Value Problem for the m-Korteweg-de Vries Equation
Author :
Lu, Dianchen ; Chen, Chenxia ; Wu, Li
Author_Institution :
Fac. of Sci., Jiangsu Univ., Zhenjiang, China
fYear :
2012
fDate :
24-25 July 2012
Firstpage :
116
Lastpage :
119
Abstract :
In this paper we study the computability of the solution operator initial-boundary problem for the m-Korteweg-de Vries equation. Define a nonlinear continuous map from the space where the auxiliary data are drawn to the space of solutions. By making use of modern methods for the study of nonlinear dispersive equation and Type-2 theory of effectivity, we prove that the solution mapH3m-1(R+) × Hm (0, T) → C ([0, T]; H3m-1 (R+))is Turing computable for any integer and computable real numberm ≥ 2 and computable real number T >; 0.
Keywords :
Korteweg-de Vries equation; boundary-value problems; mathematical operators; nonlinear differential equations; Turing computable; auxiliary data; boundary-value problem; computable analysis; computable real number; effectivity type-2 theory; integer; m-Korteweg-de Vries equation; modern methods; nonlinear continuous map; nonlinear dispersive equation; solution map; solution operator initial-boundary problem; solution space; Dispersion; Educational institutions; Electronic mail; Integral equations; Polynomials; System-on-a-chip; Computability; Initial-boundary problem; Sobolev spaces; m-KdV equation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information and Computing Science (ICIC), 2012 Fifth International Conference on
Conference_Location :
Liverpool
ISSN :
2160-7443
Print_ISBN :
978-1-4673-1985-0
Type :
conf
DOI :
10.1109/ICIC.2012.17
Filename :
6258086
Link To Document :
بازگشت