DocumentCode :
2842720
Title :
Statistical techniques for online anomaly detection in data centers
Author :
Wang, Chengwei ; Viswanathan, Krishnamurthy ; Choudur, Lakshminarayan ; Talwar, Vanish ; Satterfield, Wade ; Schwan, Karsten
Author_Institution :
CERCS, Georgia Inst. of Technol., Atlanta, GA, USA
fYear :
2011
fDate :
23-27 May 2011
Firstpage :
385
Lastpage :
392
Abstract :
Online anomaly detection is an important step in data center management, requiring light-weight techniques that provide sufficient accuracy for subsequent diagnosis and management actions. This paper presents statistical techniques based on the Tukey and Relative Entropy statistics, and applies them to data collected from a production environment and to data captured from a testbed for multi-tier web applications running on server class machines. The proposed techniques are lightweight and improve over standard Gaussian assumptions in terms of performance.
Keywords :
Gaussian processes; Internet; computer centres; security of data; statistical analysis; data center management; light weight technique; management action; multitier Web application; online anomaly detection; production environment; relative entropy statistics; server class machine; standard Gaussian assumption; statistical technique; Production;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Integrated Network Management (IM), 2011 IFIP/IEEE International Symposium on
Conference_Location :
Dublin
Print_ISBN :
978-1-4244-9219-0
Electronic_ISBN :
978-1-4244-9220-6
Type :
conf
DOI :
10.1109/INM.2011.5990537
Filename :
5990537
Link To Document :
بازگشت