Title :
An Interpretability-Guided Modeling Process for Learning Comprehensible Fuzzy Rule-Based Classifiers
Author :
Alonso, José M. ; Magdalena, Luis
Author_Institution :
Edificio Cientifico-Tecnol., Eur. Centre for Soft Comput. (ECSC), Mieres, Spain
fDate :
Nov. 30 2009-Dec. 2 2009
Abstract :
This work presents a new process for building comprehensible fuzzy systems for classification problems. Firstly, a feature selection procedure based on crisp decision trees is carried out. Secondly, strong fuzzy partitions are generated for all the selected inputs. Thirdly, a set of linguistic rules are defined combining the previously generated linguistic variables. Then, a linguistic simplification procedure guided by a novel interpretability index is applied to get a more compact and general set of rules without losing accuracy. Finally, an efficient and simple local search strategy increases the system accuracy while preserving the high interpretability. Results obtained in several benchmark classification problems are encouraging because they show the ability of the new methodology for generating highly interpretable fuzzy rule-based classifiers while yielding accuracy comparable to that achieved by other methods like neural networks and C4.5.
Keywords :
computational linguistics; fuzzy set theory; learning (artificial intelligence); query formulation; decision trees; feature selection procedure; fuzzy rule-based classifier learning; fuzzy rule-based classifiers; interpretability-guided modeling process; linguistic rules; linguistic simplification procedure; local search strategy; neural networks; Competitive intelligence; Decision trees; Fuzzy logic; Fuzzy neural networks; Fuzzy systems; Humans; Intelligent structures; Intelligent systems; Modeling; Neural networks;
Conference_Titel :
Intelligent Systems Design and Applications, 2009. ISDA '09. Ninth International Conference on
Conference_Location :
Pisa
Print_ISBN :
978-1-4244-4735-0
Electronic_ISBN :
978-0-7695-3872-3
DOI :
10.1109/ISDA.2009.24