Title :
Adjacent Vertex Reducible Vertex-Total Coloring of Graphs
Author :
Zhu, Enqiang ; Zhang, Zhongfu ; Wang, Zhiwen ; Li, Jingwen ; Wen, Fei ; Cai, HuiLin
Author_Institution :
Inst. of Appl. Math., Lanzhou Jiaotong Univ., Lanzhou, China
Abstract :
Let G = (V, E) be a simple graph, k (1 ¿ k ¿ ¿(G) +1) is a positive integer, f is a mapping from V(G) ¿ E(G) to {1,2, ···, k} such that ¿uv ¿ E(G),f(u) ¿ f(v) and C(u) = C(v) if d(u) = d(v), we say that f is the adjacent vertex reducible vertex-total coloring of G. The maximum number of k is called the adjacent vertex reducible vertex-total chromatic number of G, simply denoted by ¿avrvt(G). Where C(u) = {f(u)|u ¿ V(G)} ¿ {f(uv)|uv ¿ E{G)}. In this paper, the adjacent vertex reducible vertex-total chromatic number of some special graphs are given.
Keywords :
graph colouring; adjacent vertex reducible vertex-total chromatic number; adjacent vertex reducible vertex-total coloring; graph coloring; Mathematics; Mechatronics; Terminology;
Conference_Titel :
Computational Intelligence and Software Engineering, 2009. CiSE 2009. International Conference on
Conference_Location :
Wuhan
Print_ISBN :
978-1-4244-4507-3
Electronic_ISBN :
978-1-4244-4507-3
DOI :
10.1109/CISE.2009.5365082