DocumentCode :
2849909
Title :
A Bayesian framework for regularized SVM parameter estimation
Author :
Gregor, Jens ; Liu, Zhenqiu
Author_Institution :
Dept. of Comput. Sci., Tennessee Univ., Knoxville, TN, USA
fYear :
2004
fDate :
1-4 Nov. 2004
Firstpage :
99
Lastpage :
105
Abstract :
The support vector machine (SVM) is considered here in the context of pattern classification. The emphasis is on the soft margin classifier which uses regularization to handle non-separable learning samples. We present an SVM parameter estimation algorithm that first identifies a subset of the learning samples that we call the support set and then determines not only the weights of the classifier but also the hyperparameter that controls the influence of the regularizing penalty term on basis thereof. We provide numerical results using several data sets from the public domain.
Keywords :
Bayes methods; parameter estimation; pattern classification; support vector machines; Bayesian framework; nonseparable learning samples; parameter estimation; pattern classification; regularized SVM; soft margin classifier; support set; support vector machine; Bayesian methods; Computer science; Constraint optimization; Costs; Error analysis; Least squares methods; Parameter estimation; Pattern classification; Support vector machine classification; Support vector machines;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Data Mining, 2004. ICDM '04. Fourth IEEE International Conference on
Print_ISBN :
0-7695-2142-8
Type :
conf
DOI :
10.1109/ICDM.2004.10094
Filename :
1410272
Link To Document :
بازگشت