Title :
Parameter estimation for superimposed chirp signals
Author :
Liang, R.M. ; Arun, K.S.
Author_Institution :
Coordinated Sci. Lab., Illinois Univ., Urbana, IL, USA
Abstract :
Parameter estimation for superimposed chirp signals is a difficult signal processing problem that shows up in many applications. Cramer-Rao lower bounds are derived here for the error variance in the parameter estimates. The approach reported uses global Hankel rank reduction to estimate instantaneous frequencies followed by total least squares fitting to obtain initial estimates of the parameters. These estimates are used to initialize a search for the maximum likelihood estimates. Results on synthetic data are compared with the Cramer-Rao lower bounds
Keywords :
least squares approximations; maximum likelihood estimation; parameter estimation; signal processing; Cramer-Rao lower bounds; error variance; global Hankel rank reduction; instantaneous frequency estimation; maximum likelihood estimates; parameter estimation; signal processing; superimposed chirp signals; total least squares fitting; Acceleration; Chirp; Direction of arrival estimation; Frequency estimation; Least squares approximation; Maximum likelihood estimation; Parameter estimation; Sensor arrays; Signal processing; Signal to noise ratio;
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1992. ICASSP-92., 1992 IEEE International Conference on
Conference_Location :
San Francisco, CA
Print_ISBN :
0-7803-0532-9
DOI :
10.1109/ICASSP.1992.226517