DocumentCode :
2852899
Title :
Image and signal restoration using pairwise Markov trees
Author :
Monfrini, E. ; Lecomte, J. ; Desbouvries, F. ; Pieczynski, W.
Author_Institution :
Univ. Claude Bernard, Villeurbanne, France
fYear :
2003
fDate :
28 Sept.-1 Oct. 2003
Firstpage :
174
Lastpage :
177
Abstract :
This work deals with the statistical restoration of a hidden signal using pairwise Markov trees (PMT). PMT have been introduced recently in the case of a discrete hidden signal. We first show that PMT can perform better than the classical hidden Markov trees (HMT) when applied to unsupervised image segmentation. We next consider a PMT in a linear Gaussian model with continuous hidden data, and we give formulas of an original extension of the classical Kalman filter.
Keywords :
Gaussian processes; Kalman filters; hidden Markov models; image restoration; image segmentation; statistics; trees (mathematics); Kalman filter; image restoration; image segmentation; linear Gaussian model; pairwise Markov trees; signal restoration; statistical restoration; Hidden Markov models; Image processing; Image restoration; Image segmentation; Sections; Signal processing; Signal restoration; Stochastic processes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal Processing, 2003 IEEE Workshop on
Print_ISBN :
0-7803-7997-7
Type :
conf
DOI :
10.1109/SSP.2003.1289372
Filename :
1289372
Link To Document :
بازگشت