• DocumentCode
    2853085
  • Title

    Sliding window recursive quadratic optimization with variable regularization

  • Author

    Hoagg, J.B. ; Ali, A.A. ; Mossberg, M. ; Bernstein, D.S.

  • Author_Institution
    Dept. of Mech. Eng., Univ. of Kentucky, Lexington, KY, USA
  • fYear
    2011
  • fDate
    June 29 2011-July 1 2011
  • Firstpage
    3275
  • Lastpage
    3280
  • Abstract
    In this paper, we present a sliding-window variable-regularization recursive least squares algorithm. In contrast to standard recursive least squares, the algorithm presented in this paper operates on a finite window of data, where old data are discarded as new data become available. This property can be beneficial for estimating time-varying parameters. Furthermore, standard recursive least squares uses time-invariant regularization. More specifically, the inverse of the initial covariance matrix in standard recursive least squares can be viewed as a regularization term, which weights the difference between the next estimate and the initial estimate. This regularization is fixed for all steps of the recursion. The algorithm derived in this paper allows for time-varying regularization. In particular, the present paper allows for time varying regularization in the weighting as well as what is being weighted. Specifically, the regularization term can weight the difference between the next estimate and a time-varying vector of parameters rather than the initial estimate.
  • Keywords
    covariance matrices; least squares approximations; quadratic programming; recursive estimation; time-varying systems; variable structure systems; vectors; covariance matrix; sliding window recursive quadratic optimization; time-varying parameter estimation; time-varying vector; variable-regularization recursive least squares algorithm; Convergence; Covariance matrix; Electronic mail; Equations; Signal processing algorithms; Signal to noise ratio;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    American Control Conference (ACC), 2011
  • Conference_Location
    San Francisco, CA
  • ISSN
    0743-1619
  • Print_ISBN
    978-1-4577-0080-4
  • Type

    conf

  • DOI
    10.1109/ACC.2011.5991159
  • Filename
    5991159