DocumentCode :
2853856
Title :
Stochastic grammars for images on arbitrary graphs
Author :
Siskind, J.M. ; Pollak, I. ; Harper, M.P. ; Bouman, C.A.
Author_Institution :
Purdue Univ., CA, USA
fYear :
2003
fDate :
28 Sept.-1 Oct. 2003
Firstpage :
407
Abstract :
We describe a class of multiscale stochastic processes based on stochastic context-free grammars and called spatial random trees (SRTs) which can be effectively used for modeling multidimensional signals. In addition to modeling images which are sampled on a regular rectangular grid, we generalize this methodology to images defined on arbitrary graph structures. We develop likelihood calculation, MAP estimation, and EM-based parameter estimation algorithms for SRTs. To illustrate these methods, we apply them to classification of natural images using region graphs extracted by a recursive bipartitioning segmentation algorithm.
Keywords :
image classification; image segmentation; maximum likelihood estimation; multidimensional signal processing; stochastic processes; trees (mathematics); EM-based parameter estimation algorithms; MAP estimation; arbitrary graph structures; arbitrary graphs; multiscale stochastic processes; recursive bipartitioning segmentation algorithm; regular rectangular grid; spatial random trees; stochastic context-free grammars; stochastic grammars; Context modeling; Image segmentation; Multidimensional signal processing; Parameter estimation; Signal processing; Stochastic processes; Tree graphs;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal Processing, 2003 IEEE Workshop on
Print_ISBN :
0-7803-7997-7
Type :
conf
DOI :
10.1109/SSP.2003.1289431
Filename :
1289431
Link To Document :
بازگشت